Anchorage Regional Landfill Leachate Minimization Project

GES Engineering Group: Emily Haas Stephen Erdman Ginger Cordero

> May 2019 PROJECT #2019.04

Anchorage Regional Landfill ((aka ARL)

GES

Engineering

- Operating since 1987Municipal Solid Waste for
 - all Anchorage Municipality
- 300,000 tons per year
- 137 out of 166 acres

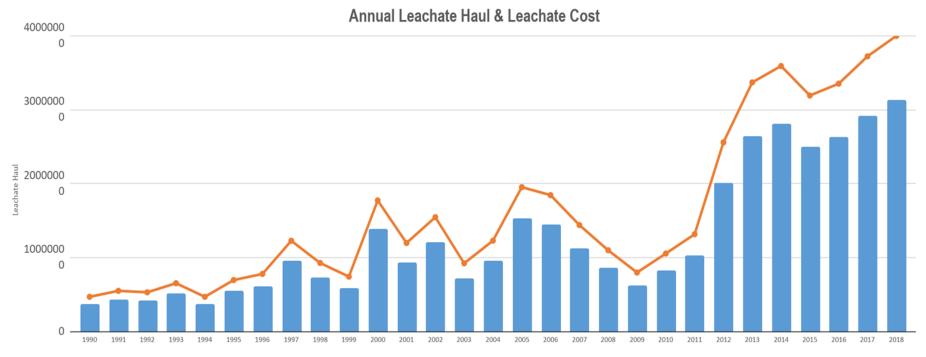
active

Remaining Life – 25 years

2

Landfills & Leachate

Carefully engineered structure
Landfill layers
Leachate Cycle
Precipitation & Water content are main contributors


Leachate collection piping networks

3

Anchorage Regional Landfill's Leachate Problem

→ Past 32 Years: 370 million gallons total leachate generated & \$16 million for transport & treatment
 → Next 25 Years: \$34-\$40 million projected

|Why Leachate is Everyone's Problem|

- Anchorage Regional Landfill Municipality owned
- ARL is the ONLY landfill servicing Greater Anchorage
 - Area
- Hauling method cannot continue
- Waste was generated by US

Project Objective

Reduction of Leachate Generation > Assessing Alternatives
 > Selecting a Design Alternative

> Operational Plan

Leachate Reduction Estimates

6

Project Methodology & Approach

Two objectives:

Minimization of Leachate at ARL

1.

Utilization of On-Site Materials

2.

Alternative Cover with Recycled Materials

1.

Public Awareness Campaign

Recommended Facility Action A

Reduce leachate generation \rightarrow **Reduce permeability of Side Slopes**

Street-sweepings for smooth surface on slopes
 Spray waste latex paint
 Prevents approx. 32% precipitation that becomes leachate

The Experiment

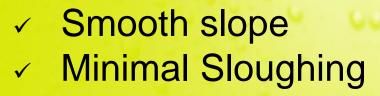
GES

Engineering

- Test effectiveness of paint for reducing permeability
- Boxes with interior screens matching exterior slope
- Rainfall simulated
- Runoff "Precipitation"

9

The Box



Wire Screen & Mesh cover

Box 1 Painted Gravel and Street Sweepings:

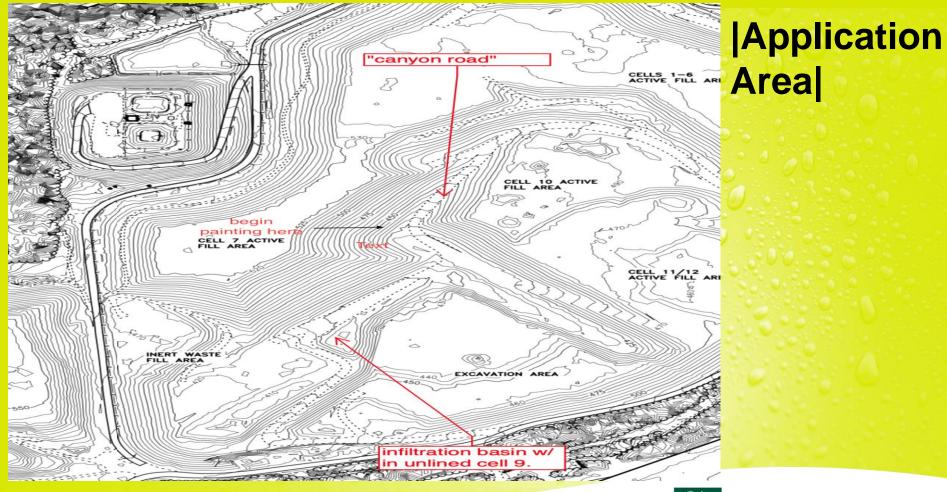
Paint Thickness	50 mil
Precipitation	5.96 L
Runoff	1.91 L
% Diverted	32%

Box 2 Previously Painted Gravel

Paint Thickness	75 mil	
Precipitation	5.76 L	
Runoff	0.21 L	
% Diverted	3.65%	

Rough slope surface
 No sloughing observed

Experiment Conclusions


- Use gravel as a base layer and street sweepings on top to create smooth surface
- Apply paint in layers to prevent sloughing
- Paint should be applied to a thickness of at least 50 mil

Timeline of Application

- Landfill receives about enough material to paint 4 acres/yr
- 10 years to completion
- Start in spring when the bulk of street sweeping material is delivered
- Paint should be applied in warm weather

Cost Analysis

Cost Estimates

Machine to Apply Paint		\$70,000
Labor Estimates		¢16.000
Labor	\$1600/year x 10 years	\$16,000
Estimated Completion Requirement		\$86,000

→ Using Recycled Waste Materials

 Latex Paint Intake
 Street Sweepings Intake

 → Costs generated include Labor & Specialized Machinery

|Projected Leachate Savings|

- 25% total leachate from seepage through slopes
- Slopes absorb 211,000 gal leachate per acre currently
- Painted slopes should absorb 67,000 gal leachate per acre

	Cumulative Leachate Saved	Cumulative Savings
<u>Year 1 (4 acres painted)</u>	574,000 gal	\$25,000.30
Year 5 (20 acres painted)	8,6 <mark>0</mark> 0,000 gal	\$379,000
Year 10 (36.75 acres painted)	31,00,000 gal	\$1,400,00

Recommended Facility Action B Reduced Liquid Waste Campaign

Help reduce liquid in landfill (3 ways)

What if? 1:2 (residential:commercial) = 2% waste decrease

Public Outlook

Overall **positive** response from Feb. 2018 survey of 500 customers:

-60% composting.

GES

Engineering

- -Education requests
- -Mandatory **recycling**

Comparing Similar Strategies

Example: Recycling and Organics Commercial Waste Reduction Program

- = \$25,000-40,000
- -Our proposed campaign: 63% less \$ -Minimal impact on disposal capacity of SWS and MOA

Diversion Programs

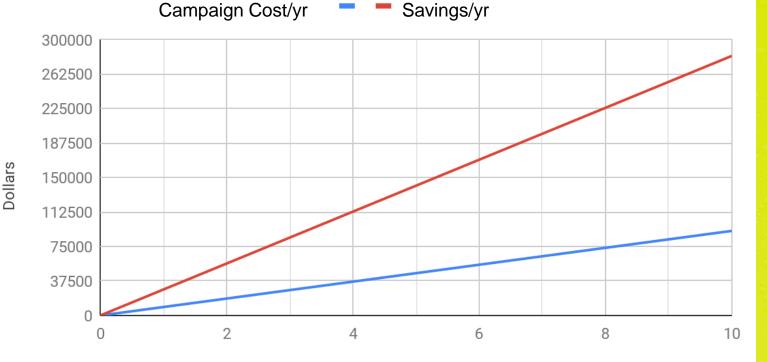
Cost

15,000 customers:

-**\$300** Graphic design

-**\$500-\$1000** radio PSAs, 3-5 billable hours

1 year plan total = **\$7200** to **\$9200**.



Cumulative Campaign Cost vs. Savings

\$28,230 per year saved With a \$9,200 campaign

GES

Engineering

Year

Why?

"Once the water is in, it's there forever."

-Target sources of liquids in ARL: precipitation & SWS customers.
 -Reduce leachate production by 2% (minimum)
 -Preventative measures: Reduce the annual leachate hauls and ultimately extend landfill life.

Internal Company Operations

Initial Hour Estimate – 85 Hours
 Initial Project Cost Estimates - \$5,000

Halfway Hour Estimate – 100 Hours
 Halfway Project Cost - \$31,000

Final Hour Total – 210 Hours
 Final Project Cost - \$20,000

GES

Engineering

Facility Recommended Actions

→ Combination of both actions reduces the most leachate → Ensures happy & involved stakeholders

SPECIAL THANKS TO:

SCOTT HAMEL, P.E. AARON DOTSON, P.E. MARIAH DEJESUS-REMAKLUS (VAA ALUMNI)

MARK SPAFFORD, P.E. Mark Madden, P.E Michael Rhodes, P.E

SUZANNA CALDWELL

Questions?

Student Project Manager Emily Haas erhaas@alaska.edu 907.891.0786

